Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 80: 35

Answer

See below

Work Step by Step

Given: $x^2+y^2=2cx$ Rewrite: $(x-c)^2+y^2=c^2$ Differentiate: $2(x-c)+2y\frac{dy}{dx}=0\\ \rightarrow \frac{dy}{dx}=-\frac{x-c}{y}\\ \rightarrow \frac{dy}{dx}=\frac{y^2-x^2}{2xy}$ Let the slope be $m_2$ We have: $\tan (\frac{\pi}{4})=\frac{m^2-\frac{y^2-x^2}{2xy}}{1+m_2.\frac{y^2-x^2}{2xy}}=1\\ \rightarrow m_2=\frac{-x^2+2xy+y^2}{x^2+2xy-y^2}\\ \rightarrow \frac{dy}{dx}=\frac{-x^2+2xy+y^2}{x^2+2xy-y^2}$ If we let $y=vx$, then $v+x\frac{dv}{dx}=-\frac{v^2+2v-1}{v^2-2v-1}\\ \rightarrow \frac{-v^2+2v+1}{v^3-v^2+v-1}=\frac{1}{x}dx$ Integrate: $\int \frac{-v^2+2v+1}{v^3-v^2+v-1}=\int \frac{1}{x}dx\\ \int (\frac{1}{v-1}-\frac{2v}{v^2+1})dv=\int \frac{1}{x}dx\\ \rightarrow \ln (v-1)-\ln(v^2+1)=\ln x+\ln c_1\\ \rightarrow \ln(\frac{v-1}{x(v^2+1)})=\ln c_1$ Substitute back $vx=y \rightarrow \frac{y-x}{x^2+y^2}=c_1$ The family of orthogonal trajectories can be $y=(x-c_2)^2+(y-c_2)^2=2c_2^2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.