Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 80: 46

Answer

$\rightarrow y=(x^2-1+Ce^{-x^2})^2$

Work Step by Step

Given: $$y'+4xy=4x^3y^{\frac{1}{2}}$$ $$\frac{dy}{dx}+4xy=4x^3y^{\frac{1}{2}}$$ This equation is in form of Bernoulli equation, where $p(x)=4x, q(x)=4x^3$ and $n=\frac{1}{2}$ Dividing both sides by $y^{\frac{1}{2}}$ $$\frac{1}{y^{\frac{1}{2}}}\frac{dy}{dx}+4xy^{\frac{1}{2}}=4x^3$$ Let $u=y^{\frac{1}{2}} \rightarrow \frac{du}{dx}=\frac{1}{2y^{\frac{1}{2}}}\frac{dy}{dx}$ Then it becomes: $$2\frac{du}{dx}+4xu=4x^3$$ $$\frac{du}{dx}+2xu=2x^3$$ The integrating factor is: $$I(x)=e^{\int 2xdx}=e^{x^2}$$ The equation becomes: $$\frac{d}{dx}(e^{x^2}u)=2xe^{x^2}u+e^{x^2}u\frac{du}{dx}$$ $$\frac{d}{dx}(e^{x^2}u)=2e^{x^2}x^3$$ Integrating both sides: $$e^{x^2}u=\int 2e^{x^2}x^3$$ Let $t=x^2 \rightarrow 2x dx=dt$ $$\int 2e^{x^2}x^3 dx=\int e^ttdt$$ Continue to let $u=t, dv=e^ttdt$ $\rightarrow du=dt, v=e^t$ then $$\int e^ttdt = te^t-\int e^t dt=te^t-e^t$$ $$\rightarrow \int 2e^{x^2}x^3 dx=x^2e^{x^2}-e^{x^2}=e^{x^2}(x^2-1)+C$$ where $C$ is a constant of integration Then: $$e^{x^2}u=e^{x^2}(x^2-1)+C$$ $$u=x^2-1 + \frac{C}{e^{x^2}}$$ Subtitute when $u=y^{\frac{1}{3}}$ we have: $$\rightarrow y^{\frac{1}{2}}=x^2-1+Ce^{-x^2}$$ $$\rightarrow y=(x^2-1+Ce^{-x^2})^2$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.