Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 80: 49

Answer

$ y=\sqrt \frac{-2 \cos^4 x+C}{\sin x}$

Work Step by Step

Given: $$2y'+ y \cot x=8y^{-1}\cos ^{3}x$$ $$2\frac{dy}{dx}+ y \cot x=8y^{-1}\cos ^{3}x$$ $$\frac{dy}{dx}+\frac{\cot x}{2}y=4y^{-1}\cos ^{3}x$$ This equation is in form of Bernoulli equation, where $p(x)=\frac{\cot x}{2}, q(x)=4y^{-1}\cos ^{3}x$ and $n=-1$ Multiplying both sides by $y$ $$y\frac{dy}{dx}+\frac{\cot x}{2}y^2=4\cos^3x$$ Let $u=y^{2} \rightarrow \frac{du}{dx}=2y\frac{dy}{dx}$ Then it becomes: $$\frac{1}{2}\frac{du}{dx}+\frac{\cot x}{2}u=4 \cot^3 x$$ $$\frac{du}{dx}+\cot(x)u=8\cot^3x$$ The integrating factor is: $$I(x)=e^{\int \cot x dx}=e^{\frac{\cos x}{\sin x}}=x$$ To solve this, we let: $\sin x =t \rightarrow \cos x dx=dt$ Hence, $I=e^{\int \frac{1}{t}dt}=e^{\ln u}=e^{\ln \sin x}=\sin x$ The equation becomes: $$\frac{d}{dx}(u \sin x)=u\cos x + \sin x\frac{du}{dx}$$ $$\frac{d}{dx}(u \sin x)=8\sin x \cos ^3 x$$ Integrating both sides: $$\int \frac{d}{dx}(u \sin x)=8 \int \sin x \cos ^3 xdx$$ For the left side, we let: $v=\cos x \rightarrow dv=-\sin x dx$ then $$\int \frac{d}{dx}(u \sin x)=8-\int v^3 dv=8(\frac{-v^4}{4})=-2v^4=-2 \cos^4 x+C$$ where $C$ is a constant of integration Then: $$u\sin x=-2 \cos^4 x+C$$ $$u=\frac{-2 \cos^4 x+C}{\sin x}$$ Subtitute when $u=y^{2}$ we have: $$\rightarrow y^{1-\pi}=\frac{-2 \cos^4 x+C}{\sin x}$$ $$\rightarrow y=\sqrt \frac{-2 \cos^4 x+C}{\sin x}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.