Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 80: 48

Answer

$y=(x^2+\frac{C}{ x})^{\frac{1}{1-\pi}}$

Work Step by Step

Given: $$\frac{dy}{dx}-\frac{1}{(\pi -1) x}y=\frac{3}{1- \pi}xy^{\pi}$$ This equation is in form of Bernoulli equation, where $p(x)=-\frac{1}{(\pi -1) x}, q(x)=\frac{3}{1- \pi }x$ and $n=\pi$ Dividing both sides by $y^3$ $$\frac{1}{y^{pi}}\frac{dy}{dx}-\frac{1}{(\pi -1) x}y^{1- \pi}=\frac{3}{1 -\pi}x$$ Let $u=y^{1- \pi} \rightarrow \frac{du}{dx}=(1 -\pi)\frac{1}{y^{\pi}}\frac{dy}{dx}$ Then it becomes: $$\frac{1}{1-\pi}\frac{du}{dx}+\frac{u}{(1-\pi) x}u=\frac{3}{1-\pi}x$$ $$\frac{du}{dx}+\frac{1}{x}u=3x$$ The integrating factor is: $$I(x)=e^{\int \frac{1}{x }dx}=e^{\ln x}=x$$ The equation becomes: $$\frac{d}{dx}(xu)=u+ x\frac{du}{dx}$$ $$\frac{d}{dx}(xu)=3x^2$$ Integrating both sides: $$\int xu=x^3 +C$$ where $C$ is a constant of integration Then: $$u=x^2+\frac{C}{x}$$ Subtitute when $u=y^{1- \pi}$ we have: $$\rightarrow y^{1-\pi}=x^2+\frac{C}{ x}$$ $$\rightarrow y=(x^2+\frac{C}{ x})^{\frac{1}{1-\pi}}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.