Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 80: 41

Answer

$\sqrt y =\frac{1}{x} (1+x^2)^{\frac{3}{2}}+\frac{C}{x}$

Work Step by Step

Given: $$y'+x^{-1}y=6\sqrt 1+x^2 \sqrt y$$ This equation is in form of Bernoulli equation, where $p(x)=2x^{-1}, q(x)=6\sqrt 1+x^2$ and $n=\frac{1}{2}$ $$\frac{dy}{dx}+x^{-1}y=6\sqrt 1+x^2 \sqrt y$$ Dividing both sides by $\sqrt y$ $$\frac{1}{\sqrt y}\frac{du}{dx}+\frac{2\sqrt y}{x}=6\sqrt 1+x^2$$ Let $u=\sqrt y \rightarrow \frac{du}{dx}=\frac{1}{2\sqrt y}\frac{dy}{dx}$ Then it becomes: $$2\frac{du}{dx}+\frac{2u}{x}=6\sqrt 1+x^2$$ $$\frac{du}{dx}+\frac{u}{x}=3\sqrt 1+x^2$$ The integrating factor is: $$I(x)=e^{\int \frac{1}{x}dx}=e^{\ln (x)}=x$$ The equation becomes: $$\frac{d}{dx}(ux)=3x\sqrt 1+x^2$$ Integrating: $$\frac{d}{dx}(ux)=\int 3x\sqrt 1+x^2$$ Let $1+x^2 = t \rightarrow 2x dc =dt$ $\rightarrow \int 3x\sqrt 1+x^2 dx=\frac{3}{2}\int \sqrt t dt=\frac{3}{2} \frac{t^{\frac{3}{2}}}{\frac{3}{2}}=t^{\frac{3}{2}}=(1+x^2)^{\frac{3}{2}}+C$ where $C$ is a constant of integration So: $$ux=(1+x^2)^{\frac{3}{2}}+C$$ $$u=\frac{1}{x}(1+x^2)^{\frac{3}{2}}+\frac{C}{x}$$ Subtitute when $y=\sqrt y$ $$\rightarrow \sqrt y =\frac{1}{x} (1+x^2)^{\frac{3}{2}}+\frac{C}{x}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.