Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 80: 44

Answer

$y(x)=\left[\left(\frac{x-a}{2}+\frac{a-b}{2}\ln{|x-a|}+C\right)\left(\frac{x-a}{x-b}\right)\right]^2$

Work Step by Step

Given $$(x-a)(x-b)(y'-\sqrt{y})=2(b-a)y$$ where $a$ and $b$ are constants, rewrite the equation in Bernoulli form: $\frac{dy}{dx}+P(x)y=Q(x)y^n$ $$y'-\sqrt{y}=\frac{2(b-a)}{(x-a)(x-b)}y$$ $$y'-\frac{2(b-a)}{(x-a)(x-b)}y=\sqrt{y}$$ $$\frac{dy}{dx}+\frac{2(a-b)}{(x-a)(x-b)}y=y^{\frac{1}{2}}$$ Divide all terms by $y^{\frac{1}{2}}$: $$y^{-\frac{1}{2}}\frac{dy}{dx}+\frac{2(a-b)}{(x-a)(x-b)}y^{\frac{1}{2}}=1$$ Let $u=y^{\frac{1}{2}}$, thus $\frac{1}{1-\frac{1}{2}}(\frac{du}{dx})=y^{-\frac{1}{2}}\frac{dy}{dx}$ $$\frac{1}{1-\frac{1}{2}}\left(\frac{du}{dx}\right)+\frac{2(a-b)}{(x-a)(x-b)}u=1$$ $$\frac{du}{dx}+\frac{(a-b)}{(x-a)(x-b)}u=\frac{1}{2}$$ Now solve as a first-order linear differential equation of the form $\frac{dy}{dx}+P(x)y=Q(x)$. First, find the integration factor $I(x)=e^{\int{P(x)}dx}$: $$I(x)=e^{\int{\frac{(a-b)}{(x-a)(x-b)}}dx}=e^{\int{\frac{1}{x-b}-\frac{1}{x-a}}dx}=e^{\ln{|x-b|}-\ln{|x-a|}}=e^{\ln{|\frac{x-b}{x-a}|}}=\frac{x-b}{x-a}$$ Multiply both sides by $I(x)$ and replace left side with $\frac{d}{dx}[(\frac{x-b}{x-a})u]$: $$\frac{d}{dx}\left[\left(\frac{x-b}{x-a}\right)u\right]=\frac{1}{2}\left(\frac{x-b}{x-a}\right)$$ Integrate both sides: $$\int{\frac{d}{dx}\left[\left(\frac{x-b}{x-a}\right)u\right]}=\int{\frac{1}{2}\left(\frac{x-b}{x-a}\right)}dx$$ $$\left(\frac{x-b}{x-a}\right)u=\frac{1}{2}\int{\frac{x}{x-a}}dx-\frac{1}{2}\int{\frac{b}{x-a}}dx$$ The first integral on the right side can be solved with $v$-substitution, where $v=x-a$: $$\frac{1}{2}\int{\frac{x}{x-a}}dx=\frac{1}{2}\int{\frac{v+a}{v}}du=\frac{1}{2}\int{1+\frac{a}{v}}du=\frac{1}{2}(v+a\ln{|v|})=\frac{1}{2}[(x-a)+a\ln{|x-a|}]$$ The second integral on the right side can be solved: $$-\frac{1}{2}\int{\frac{b}{x-a}}dx=-\frac{b}{2}\int{\frac{1}{x-a}}dx=-\frac{b}{2}\ln{|x-a|}$$ Thus, going back to our initial equation: $$\left(\frac{x-b}{x-a}\right)u=\frac{1}{2}[(x-a)+a\ln{|x-a|}]-\frac{b}{2}\ln{|x-a|}+C$$ $$\left(\frac{x-b}{x-a}\right)u=\frac{x-a}{2}+\frac{a-b}{2}\ln{|x-a|}+C$$ Solve for $y$: $$\left(\frac{x-b}{x-a}\right)y^{\frac{1}{2}}=\frac{x-a}{2}+\frac{a-b}{2}\ln{|x-a|}+C$$ $$y^{\frac{1}{2}}=\left(\frac{x-a}{2}+\frac{a-b}{2}\ln{|x-a|}+C\right)\left(\frac{x-a}{x-b}\right)$$ $$y=\left[\left(\frac{x-a}{2}+\frac{a-b}{2}\ln{|x-a|}+C\right)\left(\frac{x-a}{x-b}\right)\right]^2$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.