Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 80: 39

Answer

\[y^{-2}=2\cos x+\frac{C}{\cos x}\]

Work Step by Step

\[\frac{dy}{dx}+\frac{1}{2}(\tan x)y=2y^3 \sin x\] \[y^{-3}\frac{dy}{dx}+\frac{1}{2}(\tan x)y^{-2}=2 \sin x\;\;\;\ldots (1)\] Substitute $\;u=y^{-2}\;\;\;\ldots (2)$ Differentiate (2) with respect to $x$ \[\frac{du}{dx}=-2y^{-3}\frac{dy}{dx}\;\;\;\ldots (3)\] Using (2),(3) in (1) \[\frac{-1}{2}\frac{du}{dx}+\frac{1}{2}(\tan x)u=2\sin x\] \[\frac{du}{dx}-(\tan x)u=-4\sin x\;\;\;\ldots (4)\] This is linear differential equation Integrating Factor:- \[e^{-\int\tan x dx}=e^{\ln |\cos x|}=\cos x\] Multiply (4) by $\cos x$ \[\cos x\frac{du}{dx}-(\sin x)u=-4\sin x\cos x\] \[\frac{d}{dx}(u\cos x)=-4\sin x\cos x\] Integrating, \[u\cos x=4\int\cos x(-\sin x)dx+C\] Where $C$ is constant of integration Substitute $\;t=\cos x\;\;\;\ldots (5)$ \[\Rightarrow dt=-\sin x dx\] \[u\cos x=4\int tdt+C\] By (5) \[u\cos x=2(\cos x)^2+C\] \[u=2\cos x+\frac{C}{\cos x}\] From (2) \[y^{-2}=2\cos x+\frac{C}{\cos x}\] Hence, \[y^{-2}=2\cos x+\frac{C}{\cos x}.\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.