Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 80: 56

Answer

\[y(x)=\frac{1}{3}\left[3x-\tan^{-1}(3x+C)+1\right]\]

Work Step by Step

\[y'=\sin^2(3x-3y+1)\;\;\;\ldots (1)\] Substitute $\: V=3x-3y+1 \;\;\;\ldots (2) $ \[\frac{dV}{dx}=3-3\frac{dy}{dx}\] From (1) and (2) \[\frac{dV}{dx}=3-3\left(\sin^2 V\right)=3\left(1-\sin^2 V\right)\] \[\frac{dV}{dx}=3\cos^2 V\] Separating variables \[\sec^2 VdV=3dx\] Integrating , \[\int\sec^2 VdV=3\int dx+C\] $C$ is constant of integration \[\tan V=3x+C\] \[V=\tan^{-1}(3x+C)\] From (2) \[3x-3y+1=\tan^{-1}(3x+C)\] \[y=\frac{1}{3}\left[3x-\tan^{-1}(3x+C)+1\right]\] Hence \[y(x)=\frac{1}{3}\left[3x-\tan^{-1}(3x+C)+1\right].\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.