Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 80: 55

Answer

\[y(x)=2\left[\tan (2x+C)-2x-1\right]\]

Work Step by Step

\[y'=(4x+y+2)^2\;\;\;\ldots (1)\] Substitute $\: V=4x+y+2$ ____(2) Differentiate (2) with respect to $x$ \[\frac{dV}{dx}=4+\frac{dy}{dx}\] From (1) and (2) \[\frac{dV}{dx}=4+V^2\] Separating variables \[\frac{dV}{4+V^2}=dx\] Integrating, \[\int\frac{dV}{2^2+V^2}=\int dx+C_1\] Where $C_1$ is constant of integration \[\frac{1}{2}\tan^{-1}\frac{V}{2}=x+C_1\] \[\tan^{-1}\frac{V}{2}=2x+2C_1\] \[V=2\tan(2x+2C_1)\] From (2) \[y=2\tan(2x+2C_1)-4x-2\] \[y=2[\tan(2x+C)-2x-1]\] Where $\:C=2C_1$ Hence \[y(x)=2\left[\tan (2x+C)-2x-1\right].\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.