Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 80: 45

Answer

$y=(\frac{x\sin x+ \cos x + C}{x^2}^3$

Work Step by Step

Given: $$y'+6x^{-1}y=3x^{-1}y^{\frac{2}{3}}\cos x$$ $$x\frac{dy}{dx}+\frac{6}{x}y=\frac{3}{x}\cos xy^{\frac{2}{3}}$$ This equation is in form of Bernoulli equation, where $p(x)=\frac{6}{x}, q(x)=\frac{3 \cos x}{x}$ and $n=\frac{2}{3}$ Dividing both sides by $y^{\frac{2}{3}}$ $$\frac{1}{y^{\frac{2}{3}}}\frac{dy}{dx}+\frac{6}{x}y^{\frac{2}{3}}=\frac{3 \cos x}{x}$$ Let $u=y^{\frac{2}{3}} \rightarrow \frac{du}{dx}=\frac{1}{3y^{\frac{2}{3}}}\frac{dy}{dx}$ Then it becomes: $$3\frac{du}{dx}+\frac{6u}{x}=\frac{3\cos x}{x}$$ $$\frac{du}{dx}+\frac{2u}{x}=\frac{\cos x}{x}$$ The integrating factor is: $$I(x)=e^{\int \frac{2}{x}dx}=e^{2\ln (x)}=x^2$$ The equation becomes: $$\frac{d}{dx}(x^2u)=x\cos x$$ Integrating both sides: $$x^2u=\int x \cos x$$ Let $u=x$ and $dv=\cos dx$ $\rightarrow du=dx, v=\sin x$ $$\int x\cos x dx=x \sin x- \int \sin x dx=x \sin x + \cos x +C$$ where $C$ is a constant of integration Then: $$x^2u=x\sin x+ \cos x + C$$ $$u=\frac{x\sin x+ \cos x + C}{x^2}$$ Subtitute when $u=y^{\frac{1}{3}}$ we have: $$\rightarrow y^{\frac{1}{3}}=\frac{x\sin x+ \cos x + C}{x^2}$$ $$\rightarrow y=(\frac{x\sin x+ \cos x + C}{x^2}^3$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.