Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 80: 54

Answer

$y=3(3x-\tan 3x)$

Work Step by Step

We are given: $$y'=(9x-y)^2$$ $$F(ax+by+c)=(9x-y)^2$$ \[\frac{dy}{dx}=F(ax+by+c)\;\;\;\ldots \] Substitute $\:V=9x-y$ we have: $$\frac{dV}{dx}=9-\frac{dy}{dx} (1)$$ $$\frac{dy}{dx}=V^2 (2)$$ From (1) and (2) \[\frac{dV}{dx}=9-V^2\] Separating variables \[\frac{1}{bF(V)+a}dV=dx\] Integrating both sides: $$\int \frac{1}{9-V^2}dV=\int dx$$ To integrate the left side: $$V=3t \rightarrow dV=3dt$$ $$\rightarrow \int \frac{1}{9-V^2}dV=\int \frac{3}{9-9t^2}=\frac{1}{3}\int \frac{1}{1-t^2}dt=\frac{1}{3}\int \frac{1}{(1-t)(1+t)}=\int \frac{A}{1-t}+\frac{B}{1+t}dt$$ $$\rightarrow 1 = A+At+B-Bt$$ $\rightarrow A+B=1$ or $A - B=0$ $A=B$ or $2A=1$ $A=\frac{1}{2}$ or $B=\frac{1}{2}$ $$\int \frac{1}{(1-t)(1+t)}dt=\frac{1}{2}\int \frac{1}{1-t}dt+\frac{1}{2}\int \frac{1}{1+t}dt=\frac{1}{2}(-\ln(1-t)+\ln(1+t))$$ $$\int \frac{1}{9-V^2}dV=\frac{1}{6}(\ln (1+\frac{V}{3})-\ln(1-\frac{V}{3})=\frac{1}{3}\tan ^{-1}(\frac{V}{3})$$ Hence here, $$\int \frac{1}{9-V^2}dV=\int dx$$ $$\frac{1}{3}\tan^{-1}(\frac{V}{3})=3x+C$$ $$\tan^{-1}(3x-\frac{y}{3})=3x+C$$ $$3x-\frac{y}{3}=\tan (3x+C)$$ $$y=3(3x-\tan 3x + C)$$ We are given: $y(0)=0$ $$\rightarrow 0=3(0-\tan (C))$$ $$\rightarrow C=0$$ The final solution is: $$y=3(3x-\tan 3x)$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.