Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 80: 52

Answer

$y=\sqrt \frac{1}{(2\cos x+1) \sin^2x}$

Work Step by Step

Given: $$y'+y \cot x=y^3\sin^3x$$ This equation is in form of Bernoulli equation, where $p(x)=\cot x, q(x)=\sin^3x$ and $n=3$ Dividing both sides by $y^{3}$ $$\frac{1}{y^3}\frac{dy}{dx}+\frac{1}{y^2}\cot x=\sin^3x$$ Let $u=y^{-2} \rightarrow \frac{du}{dx}=-2\frac{1}{y^3}\frac{dy}{dx}$ Then it becomes: $$-\frac{1}{2}\frac{du}{dx}+u\cot x=\sin^3x$$ $$\frac{du}{dx}-2u \cot (x)=-2\sin^3x$$ The integrating factor is: $$I(x)=e^{-2\int \cot xdx}=e^{-2\int \frac{\cos x}{\sin x}}$$ To solve this, we let: $\sin x =t \rightarrow \cos x dx=dt$ Hence, $I=e^{-2\int \frac{1}{t}dt}=e^{-2\ln t}=e^{-2\ln \sin x}=\frac{1}{\sin^2x}=\csc^2x$ The equation becomes: $$\frac{d}{dx}(u\csc^2x)=(u\frac{1}{\sin^2 x})\frac{du}{dx}=u\frac{-2\cos x}{\sin^3x}+\frac{1}{\sin^2x}\frac{du}{dx}$$ $$\frac{d}{dx}(u\csc^2x)=-2\sin x$$ Integrating both sides: $$\int u \csc^2x=2\cos x+C$$ where $C$ is a constant of integration Subtitute when $u=y^{-2}$ we have: $$\rightarrow y^{-2}=(2\cos x+C) \sin^2x$$ $$\rightarrow y=\sqrt \frac{1}{(2\cos x+C) \sin^2x}$$ We are given $y(\frac{\pi}{2})=1$ Substituting: $$1=\frac{1}{(2\times0+C)(\frac{1}{2}[1-\cos\pi])}$$ $\rightarrow C=1$ Hence here, the solution is: $$y=\sqrt \frac{1}{(2\cos x+1) \sin^2x}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.