Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 80: 51

Answer

$y=\frac{1}{(1+x^2)(-\frac{1}{2}\ln (1+x^2)+1)}$

Work Step by Step

Given: $$\frac{dy}{dx}+\frac{2x}{1+x^2}y=xy^2$$ This equation is in form of Bernoulli equation, where $p(x)=\frac{2x}{1+x^2}, q(x)=x$ and $n=2$ Dividing both sides by $y^{2}$ $$\frac{1}{y^2}\frac{dy}{dx}+\frac{1}{y}\frac{2x}{1+x^2}y=x$$ Let $u=y^{-1} \rightarrow \frac{du}{dx}=-\frac{1}{y^2}\frac{dy}{dx}$ Then it becomes: $$-\frac{du}{dx}+\frac{2x}{1+x^2}u=x$$ $$\frac{du}{dx}-\frac{2x}{1+x^2}u=-x$$ The integrating factor is: $$I(x)=e^{-\int \frac{2x}{1+x^2}dx}=$$ To solve this, we let: $1 +x^2 =t \rightarrow 2xdx=dt$ Hence, $I=e^{-\int \frac{1}{t}dt}=e^{-\ln t}=e^{-\ln 1+x^2}=\frac{1}{1+x^2}$ The equation becomes: $$\frac{d}{dx}(\frac{1}{1+x^2}u)=-\frac{2x}{(1+x^2)^2}u+(\frac{1}{1+x^2})\frac{du}{dx}$$ $$\frac{d}{dx}(\frac{1}{1+x^2}u)=-\frac{x}{1+x^2}$$ Integrating both sides: $$\int \frac{1}{1+x^2}u=-\int \frac{x}{1+x^2}dx$$ $$\frac{1}{1+x^2}u=-\frac{1}{2}\ln (1+x^2)+C$$ where $C$ is a constant of integration Then: $$u=(1+x^2)(-\frac{1}{2}\ln (1+x^2)+C)$$ Subtitute when $u=y^{-1}$ we have: $$\rightarrow y^{-1}=(1+x^2)(-\frac{1}{2}\ln (1+x^2)+C)$$ $$\rightarrow y=\frac{1}{1+x^2)(-\frac{1}{2}\ln (1+x^2)+C}$$ We are given $y(0)=1$ Substituting: $$1=\frac{1}{(1+0^2)(-\frac{1}{2}\ln (1+0^2)+C)}$$ $\rightarrow C=1$ Hence here, the solution is: $$y=\frac{1}{(1+x^2)(-\frac{1}{2}\ln (1+x^2)+1)}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.