Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.9 Exact Differential Equations - Problems - Page 92: 17

Answer

\[y(x)=x^{-1}(x^3\ln x+5)\]

Work Step by Step

$(3x^2\ln x+x^2-y)dx-xdy=0$ ___(1) Here, $M(x,y)=3x^2\ln x+x^2-y\\ N(x,y)=-x$ $M_y=-1\;\;\;,\;\;\;N_x=-1$ $\Rightarrow M_y=N_x$ (1) is exact differential equation Therefore, there exists a potential function $\phi$ such that $\frac{\partial\phi}{\partial x}=3x^2\ln x+x^2-y$ ____(2) $\frac{\partial\phi}{\partial y}=-x$ ____(3) Integrating (3) with respect to $y$ holding $x$ fixed $\phi = -xy+h(x)$ _____(4) $h(x)$ is arbitrary function of $x$ Differentiating (4) with respect $x$ holding $y$ fixed $\frac{\partial\phi}{\partial x}=-y+\frac{dh}{dx}$ ____(5) From (2) and (5) $\frac{dh}{dx}=3x^2\ln x+x^2$ Integrating, \begin{eqnarray*} h&=&3\int x^2\ln xdx+\int x^2dx\\ &=&3\left[\ln x\frac{x^3}{3}-\int \frac{1}{x}.\frac{x^3}{3}dx\right]+\frac{x^3}{3}\\ &=&3\left[\frac{x^3}{3}\ln x-\frac{x^3}{9}\right]+\frac{x^3}{3}\\ &=&x^3\ln x \end{eqnarray*} From (4) $\phi(x,y)=-xy+x^3\ln x$ Therefore general solution of (1) is $-xy+x^3\ln x=C$ _____(6) $C$ is constant Using initial condition $y(1)=5$ $-5+1\ln 1=C\Rightarrow C=-5$ From (6) $xy-x^3\ln x=5$ $xy=5+x^3\ln x$ $\Rightarrow y(x)=x^{-1}(x^3\ln x+5)$ Hence solution of given initial value problem is $y(x)=x^{-1}(x^3\ln x+5)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.