Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.9 Exact Differential Equations - Problems - Page 92: 27

Answer

$y= \frac{C+\arctan x}{1+x^2}$

Work Step by Step

We are given $\frac{dy}{dx}+\frac{2x}{1+x^2}y=\frac{1}{(1+x^2)^2}$ We can rewrite: $(1+x^2)^2dy+(1+x^2)2xydx=dx$ $(2xy+2x^3y-1)dx+(1+x^2)^2dy=0$ Here, $M(x,y)=2xy+2x^3y-1$ $N(x,y)=(1+x^2)^2$ We have: $\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N}=\frac{(2x+2x^3)-4x(1+x^2)}{(1+x^2)^2}=\frac{-2x}{1+x^2}$ The integrating factor is: $I(x)=e^{\int f(x)dx}=e^{\int \frac{-2x}{1+x^2} dx}=\frac{1}{1+x^2}$ Multiplying equation (1) by $I(x)=\frac{1}{1+x^2}$ $\frac{1}{1+x^2}[(2xy+2x^3y-1)dx+(1+x^2)^2dy]=0$ $(2xy-\frac{1}{1+x^2})dx+(1+x^2)dy=0$ Then: $\frac{\partial \phi}{\partial x}=2xy-\frac{1}{1+x^2}$ Integrating both sides: $\phi=(1+x^2)y-\arctan x+f(y)$ We have: $\frac{\partial phi}{\partial y}=1+x^2+f'(y)=1+x^2$ Since $f'(y)=0 \rightarrow f(y)=C$ C is a constant integration The solution is: $C=(1+x^2)y-\arctan x$ or $y= \frac{C+\arctan x}{1+x^2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.