Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.9 Exact Differential Equations - Problems - Page 92: 32

Answer

$I(x,y)=x^3y^{-2}$

Work Step by Step

We are given $y(5xy^2+4)dx+x(xy^2-1)dy=0$ Multiplying equation (1) by $I(x)=x^ry^s$ $x^ry^s(y(5xy^2+4)dx+x(xy^2-1)dy)=0$ $x^ry^sy(5xy^2+4)dx+x^ry^sx(xy^2-1)dy=0$ Here, $M(x,y)=x^ry^sy(5xy^2+4)$ $N(x,y)=x^ry^sx(xy^2-1)$ $\frac{\partial M}{\partial y}=x^ry^s((s(5xy^2+4)x^2+15xy^2+4)$ $\frac{\partial N}{\partial x}=x^{r}y^s(r(xy^2-1)+2xy^2-1)$ The given diffirential equation is exact So $\frac{\partial N}{\partial x}=\frac{\partial M}{\partial y}$ $x^ry^s((s(5xy^2+4)x^2+15xy^2+4)=x^{r}y^s(r(xy^2-1)+2xy^2-1)$ $(5s+15)xy^2+4s+4=(r+2)xy^2-r-1$ $5(s+3)=r+2$ $4(s+1)=-(r+1)$ $\rightarrow r=3, s=-2$ Hence here, $I(x,y)=x^3y^{-2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.