Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.9 Exact Differential Equations - Problems - Page 92: 25

Answer

$C=x^3e^{3y}-3\cos y$

Work Step by Step

We are given $x^2ydx+y(x^3+e^{-3y}\sin y )dy=0$ ___(1) Here, $M(x,y)=x^2y$ $N(x,y)=y(x^3+e^{-3y}\sin y)$ We have: $\frac{M_y-N_x}{N}=3-\frac{1}{y}=f(y)$ The integrating factor is: $I(x)=e^{\int f(x)dy}=e^{\int 3-\frac{1}{y}dy}=e^{3y-\ln y }=\frac{e^{3y}}{y}$ Multiplying equation (1) by $I(x)=\frac{e^{3y}}{y}$ $\frac{e^{3y}}{y}(x^2ydx+y(x^3+e^{-3y}\sin y )dy)=0$ $x^2e^{3y}dx+(x^3e^{3y}+\sin y)dy=0$ Then: $\frac{\partial \phi}{\partial x}=x^2e^{3y}$ Integrating both sides: $\phi=\frac{x^3e^{3y}}{3})+f(y)$ We have: $\frac{\partial phi}{\partial y}=x^3e^{3y}+f'(y)=x^2e^{3y}+\sin y$ $\rightarrow f'(y)=\sin y$ Since $f'(y)=\sin y \rightarrow f(y)=-\cos y + C$ C is a constant integration The solution is: $\phi (x,y)=\frac{x^3e^{3y}}{3}-\cos y+C=0$ or $C=x^3e^{3y}-3\cos y$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.