Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.9 Exact Differential Equations - Problems - Page 92: 29

Answer

$y= \sqrt \frac{2x-y^4}{C}$

Work Step by Step

We are given $ydx+(2x+y^4)dy=0$ Here, $M(x,y)=y$ $N(x,y)=2x+y^4$ We have: $\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{N}=\frac{-3}{y}$ The integrating factor is: $I(x)=e^{\int f(x)dx}=e^{\int \frac{-3}{y}dy}=e^{-3\ln y}=\frac{1}{y^3}$ Multiplying equation (1) by $I(x)=\frac{1}{y^3}$ $\frac{1}{y^3}(ydx+(2x+y^4)dy)=0$ $y^{-2}dx+(2xy^{-3}+y)dy=0$ Then: $\frac{\partial \phi}{\partial x}=y^{-2}$ Integrating both sides: $\phi=xy^{-2}+f(y)$ We have: $\frac{\partial phi}{\partial y}=-2xy^{-3}+f'(y)=-2xy^{-3}-y$ Since $f'(y)=0 \rightarrow f(y)=-\frac{y^2}{2}+C$ C is a constant integration The solution is: $\phi (x,y)=xy^{-2}-\frac{y^2}{2}+C$ or $y= \sqrt \frac{2x-y^4}{C}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.