Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.9 Exact Differential Equations - Problems - Page 92: 33

Answer

See below

Work Step by Step

Given $\frac{M_y-N_x}{M}=g(y)$ where $g(y)$ is only function of $y$ Multiply both sides by integrating factor $I(x)=e^{-\int g(y)dy}$ $\frac{\partial}{\partial x}(e^{-\int g(y)dy} N)=\frac{\partial}{\partial y}(e^{-\int g(y)dy}M)\\ \rightarrow e^{-\int g(y)dy}\frac{\partial N}{\partial x}+N\frac{\partial}{\partial x}e^{-\int g(y)dy}=M\frac{\partial}{\partial y}e^{-\int g(y)dy}+e^{-\int g(y)dy}\frac{\partial M}{\partial y}\\ \rightarrow e^{-\int g(y)dy}\frac{\partial N}{\partial x}+0=Me^{-\int g(y)dy}g(y)+e^{-\int g(y)dy}\frac{\partial M}{\partial y}\\ \rightarrow e^{-\int g(y)dy}\frac{\partial N}{\partial x}+0=Me^{-\int g(y)dy}g(y)(-\int g(y) dy)+e^{-\int g(y)dy}\frac{\partial M}{\partial y}\\ \rightarrow e^{-\int g(y)dy}\frac{\partial N}{\partial x}=Me^{-\int g(y)dy}(-g(y))+e^{-\int g(y)dy}\frac{\partial M}{\partial y}\\ \rightarrow e^{-\int g(y)dy}(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y})=-g(y)Me^{-\int g(y)dy}\\ \rightarrow e^{-\int g(y)dy}(\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{M})=-g(y)Me^{-\int g(y)dy}\\ \rightarrow \frac{M_y-N_x}{M}=g(y)$ Hence, $ e^{-\int g(y)dy}Mdx+ e^{-\int g(y)dy}Ndy=0$ is exact.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.