Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.9 Exact Differential Equations - Problems - Page 92: 18

Answer

$y=\frac{1}{2}\ln (2-\sin x)$

Work Step by Step

We are given: $$(ye^{xy}+cos x) dx+xe^{xy}dy=0(1)$$ Here, $M(x,y)=\frac{\partial}{\partial y}(ye^{xy}+\cos x)=e^{xy}+xye^{xy}$ $N(x,y)=\frac{\partial}{\partial x}(xe^{xy})=e^{xy}+xye^{xy}$ $M_y=e^{xy}+xye^{xy} \;\;\;\;,\;\;\;\;N_x=e^{xy}+xye^{xy}$ $M_y=N_x$ $\Rightarrow$ (1) is exact differential equation Therefore there exists a potential function $\phi$ such that $\frac{\partial\phi}{\partial x}=(ye^{xy}+\cos x)$ ___(2) Integrating (2) with respect to $x$ holding $y$ fixed $\phi =e^{xy}+\sin x+f(y)$ ___(3) Where $f(y)$ is arbitrary function of $y$ Hence we get: $\frac{\partial\phi}{\partial y}=xe^{xy}+f'(y)=xe^{xy}$ (4) We have $f'(y)=0\rightarrow f(y)=C$ $C$ is constant The solution is: $\phi(x,y)= e^{xy}+\sin x+C$ Since $y(\frac{pi}{2})=0$ so: $0=e^0+\sin (\frac{pi}{2})+C$ $C=2$ We have: $e^{xy}+\sin x=2 \rightarrow e^{xy}=2-\sin x$ The solution is: $y=\frac{1}{2}\ln (2-\sin x)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.