Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.9 Exact Differential Equations - Problems - Page 92: 28

Answer

$y= \frac{1}{x}e^{\frac{C}{x^2}}$

Work Step by Step

We are given $xy[2\ln xy+1]dx+x^2dy=0$ Here, $M(x,y)=xy[2\ln xy+1]$ $N(x,y)=x^2$ We have: $\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{N}=\frac{-1}{y}$ The integrating factor is: $I(x)=e^{\int f(x)dx}=e^{\int \frac{-1}{y}dy}=e^{-\ln y}=\frac{1}{y}$ Multiplying equation (1) by $I(x)=\frac{1}{y}$ $\frac{1}{y}(xy(2\ln xy+1)dx+x^2dy)=0$ $x(2\ln xy+1)dx+(x^2y^{-1})dy=0$ Then: $\frac{\partial \phi}{\partial x}=x(2\ln xy+1)$ Integrating both sides: $\phi=x^2+\ln (xy)+f(y)$ We have: $\frac{\partial phi}{\partial y}=\frac{x^2}{y}+f'(y)=\frac{x^2}{y}$ Since $f'(y)=0 \rightarrow f(y)=C$ C is a constant integration The solution is: $\phi (x,y)=x^2\ln xy+C$ or $y= \frac{1}{x}e^{\frac{C}{x^2}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.