Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.9 Exact Differential Equations - Problems - Page 92: 30

Answer

$I(x,y)=x^2y^4$

Work Step by Step

We are given $(y^{-1}-x^{-1})dx+(xy^{-2}-2y^{-1})dy=0$ Multiplying equation (1) by $I(x)=x^ry^s$ $x^ry^s(y^{-1}-x^{-1})dx+x^ry^s(xy^{-2}-2y^{-1})dy=0$ Here, $M(x,y)=x^ry^s(y^{-1}-x^{-1})$ $N(x,y)=x^ry^s(xy^{-2}-2y^{-1})$ $\frac{\partial M}{\partial y}=x^{r-1}y^{s-2}((s-1)x-sy)(rx-2ry+x)$ $\frac{\partial N}{\partial x}=x^{r-1}s^{r-2}$ The given diffirential equation is exact $\frac{\partial N}{\partial x}=\frac{\partial M}{\partial y}$ $x^{r-1}y^{s-2}((s-1)x-sy)=x^{r-1}y^{s-2}(rx-2ry+x)$ $(s-1)x-sy=(r+1)x-2ry$ $s=2r$ Hence here, $I(x,y)=x^2y^4$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.