Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.9 Exact Differential Equations - Problems - Page 92: 24

Answer

$C=\frac{x^2(xy^2-1)}{y}$

Work Step by Step

We are given $(3xy-2y^{-1})dx+x(x+y^{-2})dy=0$ ___(1) Here, $M(x,y)=3xy-2y^{-1}$ $N(x,y)=x(x+y^{-2})$ $(M)_y=3x+\frac{2}{y^2}$ $(N)_x=2x+\frac{1}{y^2}$ $(M)_y \ne (N)_x$ $\Rightarrow $ (2) is not Exact We have: $\frac{M_y-N_x}{N}=\frac{1}{x}=f(x)$ The integrating factor is: $I(x)=e^{\int f(x)dx}=e^{\int \frac{1}{x}dx}=e^{\ln x }=x$ Multiplying equation (1) by $I(x)=x$ $x(3xy-2y^{-1})dx+x^2(x+y^{-2})dy=0$ Then: $\frac{\partial \phi}{\partial x}=x(3xy-\frac{2}{y})$ Integrating both sides: $\phi (x,y)=g(y)+\int x(3xy -\frac{2}{y})dx$ We have: $\phi(x,y)=g(y)+\frac{x^2(xy^2-1)}{y}$ For $\frac{\partial phi}{\partial y}=x^2(x+y^{-2})$ $\rightarrow g'(y)+x^2(x+\frac{1}{y^2})=x^2(x+y^{-2})$ Since $g'(y)=0 \rightarrow g(y)=C$ C is a constant integration The solution is: $\phi (x,y)=\frac{x^2(xy^2-1)}{y}+C=0$ or $C=\frac{x^2(xy^2-1)}{y}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.