Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.9 Exact Differential Equations - Problems - Page 92: 8

Answer

$C=\ln x-tan^{-1}\frac{x}{y}$

Work Step by Step

We are given: $$(\frac{1}{x}-\frac{y}{x^2+y^2})dx+\frac{x}{x^2+y^2}dy=0 (1)$$ Here, $M(x,y)=\frac{\partial}{\partial y}(\frac{1}{x}-\frac{y}{x^2+y^2})=\frac{y^2-x^2}{(x^2+y^2)^2}$ $N(x,y)=\frac{\partial}{\partial x}(\frac{x}{x^2+y^2})=\frac{y^2-x^2}{(x^2+y^2)^2}$ $M_y=\frac{y^2-x^2}{(x^2+y^2)^2}\;\;\;\;,\;\;\;\;N_x=\frac{y^2-x^2}{(x^2+y^2)^2}$ $M_y=N_x$ $\Rightarrow$ (1) is exact differential equation Therefore there exists a potential function $\phi$ such that $\frac{\partial\phi}{\partial x}=\frac{1}{x}-\frac{y}{x^2+y^2}$ ___(2) Integrating (2) with respect to $x$ holding $y$ fixed $\phi =\ln x - \tan ^{-1}\frac{x}{y}+f(y)$ ___(3) Where $f(y)$ is arbitrary function of $y$ Hence we get: $\frac{\partial\phi}{\partial y}=\frac{x}{x^2+y^2}+f'(y)=\frac{x}{x^2+y^2} \rightarrow f'(y)=0$ (4) Differentiate (4) with respect to $y$: $f(y)=C$ $C$ is constant The solution is: $\phi(x,y)=\ln x-tan^{-1}\frac{x}{y}+C$ and $\phi(x,y)=0$ so: $C=\ln x-tan^{-1}\frac{x}{y}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.