Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.9 Exact Differential Equations - Problems - Page 92: 20

Answer

$I=\cos xy$ $\;$ is integrating factor.

Work Step by Step

$(\tan xy+xy)dx+x^2dy=0$ ___(1) Here, $M(x,y)=\tan xy+xy$ $N(x,y)=x^2$ $M_y=x\sec^2xy+x\;\;\;,\;\;\;N_x=2x$ $M_{y}\neq N_{x}$ (1) is not exact Multiply (1) by $I=\cos xy$ $(\sin xy+xy\cos xy)dx+x^2\cos xy\;dy=0$ ___(2) Here, $M_{1}(x,y)=\sin xy+xy\cos xy$ $N_{1}(x,y)=x^2\cos xy$ $(M_{1})_y=x\cos xy+x[\cos xy-xy\sin xy]$ $\;\;\;\;\;\;\;\;\;\;\;=2x\cos xy-x^2y\sin xy$ $(N_{1})_x=2x\cos xy-x^2y\sin xy$ $(M_{1})_y=(N_{1})_x$ $\Rightarrow $ (2) is Exact $I=\cos xy$ $\;$ is integrating factor of (1).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.