Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 79: 1

Answer

$f(x,y)$ is homogeneous of degree $zero.$

Work Step by Step

Given $$f(x, y)=\frac{5 x+2 y}{9 x-4 y}$$ Let \begin{aligned} f (t x, ty)&=\frac{5t x+2 ty}{9 tx-4 ty}\\ &=\frac{t(5 x+2 y)}{t(9 x-4 y)}\\ &=\frac{5 x+2 y}{9 x-4 y}\\ &=f(x,t) \end{aligned} Thus, $f(x,y)$ is homogeneous of degree zero. Transforming the given function \begin{aligned}f(x, y)&=\frac{5 \frac{x}{x}+2 \frac{y}{x}}{9\frac{x}{x}-4 \frac{y}{x}}\\ &=\frac{5 +2 \frac{y}{x}}{9 -4 \frac{y}{x}} \\ \text{Put} \ \ \ v=\frac{y}{x} \ \ \ \text{so, we get}\\ f(x,y)&=\frac{5 +2 v}{9 -4v} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.