Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 79: 7

Answer

$f(x,y)$ is homogeneous of degree zero. $$f(x,y)=\sqrt{ 1+ v^2}$$

Work Step by Step

Given $$f(x, y)=\frac{\sqrt{x^2+y^2}}{x} $$ Let \begin{aligned} f (t x, ty)&=\frac{\sqrt{(tx)^2+(ty)^2}}{tx}\\ &=\frac{t(3x+10y)}{6 ty}\\ &=\frac{t\sqrt{x^2+y^2}}{tx}\\ &=\frac{\sqrt{x^2+y^2}}{x}\\ &=f(x,t) \end{aligned} Thus, $f(x,y)$ is homogeneous of degree zero. Transforming the given function \begin{aligned}f(x, y)&=\frac{\sqrt{ \frac{x^2}{x^2}+ \frac{y^2}{x^2}}}{\frac{x}{x}}\\ &=\sqrt{ 1+ \frac{y^2}{x^2}} \\ \text{Put} \ \ \ v=\frac{y}{x} \ \ \ \text{so, we get}\\ f(x,y)&=\sqrt{ 1+ v^2} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.