Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 79: 18

Answer

$y^2=x^2\ln(\ln(Cx))$

Work Step by Step

Given: $$2xydy-(x^2e^{-\frac{y^2}{x^2}}+2y^2)dx=0$$ $$\frac{dy}{dx}=\frac{x^2e^{-\frac{y^2}{x^2}}+2y^2}{2xy}$$ Let $y=vx \rightarrow \frac{dy}{dx}=v+x\frac{dv}{dx}$ Subtituting: $$x\frac{dv}{dx}+v=\frac{x^2e^{-\frac{y^2}{x^2}}+2(vx)^2}{2x(vx)}$$ $$x\frac{dv}{dx}+v=\frac{e^{-v^2}+2v^2}{2v}$$ $$x\frac{dv}{dx}=\frac{e^{-v^2}+2v^2}{2v}-v$$ $$x\frac{dv}{dx}=\frac{e^{-v^2}}{2v}$$ $$\frac{dx}{x}=\frac{2v}{e^{-v^2}}dv$$ Integrating both sides: $$\int \frac{1}{x}dx=\int \frac{2v}{e^{-v^2}}dv$$ $$e^{v^2}=\ln x +C$$ where $C$ is a constant of integration. Subtitute when $y=vx $ $$\rightarrow e^{\frac{y^2}{x^2}}=\ln x + C$$ $$\rightarrow y^2=x^2\ln(\ln x+C)$$ Let $C=\ln C$: $$\rightarrow y^2=x^2\ln(\ln(Cx))$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.