Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 79: 16

Answer

$y=xe^{Cx+1}$

Work Step by Step

Given: $$xy'+ y\ln x=y \ln y$$ Let $y=vx \rightarrow \frac{dy}{dx}=v+x\frac{dv}{dx}$ Subtituting: $$x(v+xv')+ vx\ln x=vx \ln vx$$ $$x(v+xv')+ vx\ln x=vx \ln v+ vx \ln x$$ $$x(v+xv')=vx \ln v$$ $$xv+x^2v'=vx \ln v$$ $$x^2v'=vx\ln v - xv$$ $$xv'=v\ln v - v$$ $$xv'=v(\ln v -1)$$ $$\frac{dv}{v(\ln v -1)}=\frac{1}{x}dx$$ Integrating left side: $\int \frac{dv}{v(\ln v -1)}$ Let $v=u \rightarrow \frac{1}{v}dv=du$ then $\int \frac{du}{u-1}=\ln (u-1)=\ln(\ln v-1)$ and $\ln(\ln v-1)=\ln x + C$ Subtitute when $y=vx \rightarrow y=\frac{y}{x} \rightarrow \ln\frac{y}{x}-1=e^{\ln x + C}+C$ $y=xe^{Cx+1}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.