Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 79: 27

Answer

\[y(x)=\frac{1}{18}(81-x^2)\]

Work Step by Step

\[\frac{dy}{dx}=\frac{y-\sqrt{x^2+y^2}}{x}\] \[\frac{dy}{dx}=\frac{y}{x}-\sqrt{1+\frac{y^2}{x^2}}\;\;\;\ldots (1)\] Substitute $\:y=Vx \;\;\;\ldots (2)$ Differentiate (2) with respect to $x$ \[\frac{dy}{dx}=V+x\frac{dV}{dx}\;\;\;\;\ldots (3)\] From (1), (2) and (3) \[ V+x\frac{dV}{dx} =V-\sqrt{1+V^2}\] \[x\frac{dV}{dx}=-\sqrt{1+V^2}\] Separating Variables, \[\frac{dV}{\sqrt{1+V^2}}=-\frac{dx}{x}\] Integrating, \[\int\frac{dV}{\sqrt{1+V^2}}=-\int\frac{dx}{x}+\ln C\] Where $\ln C$ is constant of integration \[\ln\left|V+\sqrt{1+V^2}\right|=-\ln |x|+\ln C\] \[V+\sqrt{1+V^2}=\frac{C}{x}\] From (2) \[\frac{y}{x}+\sqrt{1+\frac{y^2}{x^2}}=\frac{C}{x}\] \[y+\sqrt{x^2+y^2}=C \;\;\;\ldots (4)\] Using initial condition $y(3)=4$ \[4+\sqrt{9+16}=9=C\] From (4) \[y+\sqrt{x^2+y^2}=9\] \[\sqrt{x^2+y^2}=9-y\] \[x^2+y^2=81+y^2-18y\] \[18y=81-x^2\] \[y=\frac{1}{18}(81-x^2)\] Hence \[y(x)=\frac{1}{18}(81-x^2)\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.