Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 79: 23

Answer

\[y^2=x^2\left[(\ln cx)^2-1\right]\]

Work Step by Step

\[\frac{dy}{dx}=\frac{x\sqrt{x^2+y^2}+y^2}{xy}\] \[\frac{dy}{dx}=\sqrt{\frac{x^2}{y^2}+1}+\frac{y}{x}\] \[\frac{dy}{dx}=\sqrt{\frac{1}{\left(\frac{y}{x}\right)^2}+1}+\frac{y}{x}\;\;\;\ldots (1)\] Substitute $\: y=Vx$ ____(2) Differentiate (2) with respect to $x$ \[\frac{dy}{dx}=V+x\frac{dV}{dx} \;\;\;\ldots (3)\] From (1),(2) and (3) \[V+x\frac{dV}{dx}=\sqrt{\frac{1}{V^2}+1}+V\] \[x\frac{dV}{dx}=\frac{\sqrt{1+V^2}}{V}\] Separating variables \[\frac{V}{\sqrt{1+V^2}}dV=\frac{1}{x}dx\] Integrating, \[\int\frac{V}{\sqrt{1+V^2}}dV=\int\frac{1}{x}dx+\ln c\] $\ln c$ is constant of integration \[\sqrt{1+V^2}=\ln |x|+\ln |c|\] \[\sqrt{1+V^2}=\ln |cx|\] \[1+V^2=(\ln |cx|)^2\] From (2) \[1+\frac{y^2}{x^2}=(\ln |cx|)^2\] \[\frac{y^2}{x^2}=(\ln |cx|)^2-1\] \[y^2=x^2\left[(\ln |cx|)^2-1\right]\] Hence general solution of (1) is \[y^2=x^2\left[(\ln cx)^2-1\right]\].
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.