Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 79: 28

Answer

See below

Work Step by Step

Given $x\frac{dy}{dx}-y=\sqrt 4x^2-y^2\\ x\frac{dy}{dx}=\sqrt 4x^2-y^2+y$ Since $x\gt 0$, the equation becomes: $\frac{dy}{dx}=\sqrt 4-\frac{y^2}{x^2}+\frac{y}{x}$ Let $V=\frac{y}{x}$ then $y=Vx\\\frac{dy}{dx}=V+x\frac{dV}{dx}$ The equation becomes: $V+ x\frac{dV}{dx}=\sqrt 4-V^2+V\\\rightarrow x\frac{dV}{dx}=\sqrt 4-V^2\\\rightarrow \frac{dV}{\sqrt 4-V^2}=\frac{dx}{x}$ Integrating both sides: $\int \frac{1}{\sqrt 4-V^2}dV=\int \frac{1}{x}dx$ Solve the left side: $V=2\sin t\rightarrow dV=2\cos t dt\\ \rightarrow \int \frac{1}{\sqrt 4-V^2}dV=\int\frac{1}{\sqrt 4-4\sin^2(t)}2\cos t dt\\ \rightarrow \int \frac{1}{\sqrt 4-V^2}dV=\int \frac{1}{\sqrt 1-\sin^2(t)}\cos t dt$ With $1-\sin^2(t)=\cos^2(t)$ Hence, $\int \frac{1}{\sqrt 1-\sin^2(t)}\cos t dt=\int \frac{1}{\sqrt \cos^2(t)}\cos t dt\\ \rightarrow \int 1dt=t\\ \rightarrow t=\arcsin \frac{V}{2}$ Hence, $\arcsin \frac{V}{2}=\ln|x|+\ln c$ Since $V=\frac{y}{x}$, we have: $\arcsin \frac{y}{2x}=\ln|x|+\ln c\\ \rightarrow \frac{y}{2x}=\sin(\ln(cx))$ Hence, $y(x)=2x\sin (\ln(cx))$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.