Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 79: 22

Answer

\[y(x)=x\sin^{-1}(Cx)\]

Work Step by Step

\[x\frac{dy}{dx}=x\tan\left(\frac{y}{x}\right)+y\] \[\frac{dy}{dx}=\tan\left(\frac{y}{x}\right)+\frac{y}{x}\;\;\;\ldots (1)\] Substitute $\:y=Vx\;\;\;\ldots (2)$ Differentiate (2) with respect to $x$ \[\frac{dy}{dx}=V+x\frac{dV}{dx}\;\;\;\ldots (3)\] From (1),(2) and (3) \[V+x\frac{dV}{dx}=\tan V+V\] \[x\frac{dV}{dx}=\tan V\] Separating variables, \[\cot V dV=\frac{1}{x}dx\] Integrating, \[\int\cot V dV=\int\frac{1}{x}dx+\ln C\] Where $\ln C$ is constant of integration \[\ln |\sin V|=\ln |x|+\ln |C|=\ln |Cx|\] \[\sin V=Cx\] \[V=\sin^{-1}(Cx)\] From (2) \[\frac{y}{x}=\sin^{-1}(Cx)\] \[y=x\sin^{-1}(Cx)\] Hence general solution of (1) is \[y(x)=x\sin^{-1}(Cx)\;.\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.