Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 79: 20

Answer

$\rightarrow y^2=C^2-2Cx$

Work Step by Step

Given: $$yy'=\sqrt x^2+y^2 -x$$ $$\frac{dy}{dx}=\frac{\sqrt x^2+y^2 -x}{y}$$ Let $y=vx \rightarrow \frac{dy}{dx}=v+x\frac{dv}{dx}$ Subtituting: $$x\frac{dv}{dx}+v=\frac{\sqrt x^2+(vx)^2 }{vx}$$ $$x\frac{dv}{dx}+v=\frac{\sqrt 1+v^2-1}{v}$$ $$x\frac{dv}{dx}=\frac{\sqrt 1+v^2-1}{v}-v$$ $$x\frac{dv}{dx}=\frac{\sqrt 1+v^2-1-v^2}{v}$$ $$\frac{dx}{x}=\frac{v}{\sqrt 1+v^2-1-v^2}dv$$ Integrating left sides: $\int \frac{v}{\sqrt 1+v^2-1-v^2}dv$ Let $\sqrt 1+v^2=u \rightarrow \frac{v}{\sqrt 1+v^2}dv=du$ $$\int \frac{v}{\sqrt 1+v^2-1-v^2}dv$$ $$\int \frac{1}{1-\sqrt 1+v^2}\frac{v}{\sqrt 1+v^2}dv=-\ln (1-\sqrt 1+v^2)$$ Hence, $$-\ln (1-\sqrt 1+v^2)=\ln x + \ln C$$ where $C$ is a constant of integration. $$\ln(x(1-\sqrt 1+v^2))=\ln C$$ $$x(1-\sqrt 1+v^2)=C$$ Subtitute when $y=vx $ $$\rightarrow x-\sqrt x^2+y^2=C$$ $$\rightarrow (x-C)^2=x^2 + y^2$$ $$\rightarrow y^2=C^2-2Cx$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.