Answer
See below
Work Step by Step
Given: $(x-c)^2+(y-c)^2=2c^2$
Differentiate: $2(x-c)+2(y-c)\frac{dy}{dx}=0\\
\rightarrow \frac{dy}{dx}=\frac{c-x}{y-c}\\
\rightarrow \frac{dy}{dx}=-\frac{y-c}{c-x}\\
\rightarrow \frac{dy}{y-c}=-\frac{dx}{c-x}$
Integrate: $\int \frac{dy}{y-c}=-\frac{dx}{c-x}\\
\rightarrow \ln (y-c)=\ln(x-c)+\ln k\\
\rightarrow y=(x-c)c_1$
The family of orthogonal trajectories can be $y=(x-c)c_1$