Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 79: 14

Answer

\[y+\sqrt{y^2+9x^2}=Cx^2\]

Work Step by Step

\[xy'-y=\sqrt{9x^2+y^2}\] \[y'=\frac{dy}{dx}=\frac{\sqrt{9x^2+y^2}+y}{x}\] \[\frac{dy}{dx}=\sqrt{9+\frac{y^2}{x^2}}+\frac{y}{x}\;\;\;\ldots (1)\] Substitute $\:y=Vx\;\;\;\ldots (2)$ \[\frac{dy}{dx}=V+x\frac{dV}{dx}\;\;\;\ldots (3)\] From (1), (2) and (3) \[V+x\frac{dV}{dx}=\sqrt{9+V^2}+V\] \[x\frac{dV}{dx}=\sqrt{9+V^2}\] Separating Variables, \[\frac{dV}{\sqrt{3^2+V^2}}=\frac{1}{x}dx\] Integrating, \[\int\frac{dV}{\sqrt{3^2+V^2}}=\int\frac{1}{x}dx+\ln C\] Where $\ln C$ is constant of integration \[\ln\left|V+\sqrt{V^2+3^2}\right|=\ln |x|+\ln C\] \[V+\sqrt{V^2+3^2}=Cx\] From (2) \[\frac{y}{x}+\sqrt{\frac{y^2}{x^2}+9}=Cx\] \[y+\sqrt{y^2+9x^2}=Cx^2\] Hence general solution of (1)\[y+\sqrt{y^2+9x^2}=Cx^2\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.