Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 79: 11

Answer

$x\tan (\frac{1}{2}\ln|x|+C)$

Work Step by Step

Given: $$\frac{dy}{dx}=\frac{(x+y)^2}{2x^2}$$ $$\frac{dy}{dx}=\frac{x^2+2xy+y^2}{2x^2}$$ $$\frac{dy}{dx}=\frac{1}{2}.(\frac{y}{x})^2+\frac{y}{x}+\frac{1}{2}$$ Let $y=vx \rightarrow \frac{dy}{dx}=v+x\frac{dv}{dx}$ Subtituting: $$v+x\frac{dv}{dx}=\frac{1}{2}v^2+v+\frac{1}{2}$$ $$x\frac{dv}{dx}=\frac{v^2+1}{2}$$ $$x\frac{dv}{v^2+1}=\frac{dx}{2}$$ $$\frac{dv}{v^2+1}=\frac{dx}{2x}$$ Integrating left side: $$\int \frac{dv}{v^2+1}=\int \frac{dx}{2x}+C$$ $$\arctan v=\frac{1}{2}\ln|x| + C$$ $$\tan v=\tan (\frac{1}{2}\ln|x|+C)$$ Subtitute when $y=vx \rightarrow y=x\tan (\frac{1}{2}\ln|x|+C)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.