Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 79: 13

Answer

$ y=4x\sin (\ln x + C)$

Work Step by Step

Given: $$xy'=\sqrt 16x^2-y^2 +y$$ Let $y=vx \rightarrow \frac{dy}{dx}=v+x\frac{dv}{dx}$ Subtituting: $$x(xv'+v) =\sqrt16x^2-x^2v^2 +vx$$ $$xxv'+xv =x\sqrt 16-v^2 +vx$$ $$xv' =\sqrt16-v^2 $$ Integrating both side: $$\int \frac{dv}{\sqrt 16-v^2}=\int \frac{1}{x}dx+C$$ $$sin^{-1}(\frac{v}{4})=\ln x + C$$ Subtitute when $y=vx \rightarrow y=\frac{y}{x} \rightarrow sin^{-1}(\frac{y}{4x})=\ln x + C$ $\rightarrow (\frac{y}{4x})=\sin (\ln x + C)$ $\rightarrow y=4x\sin (\ln x + C)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.