Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 79: 15

Answer

$\ln xy=C+\frac{x^2}{2y^2}$

Work Step by Step

Given: $$y(x^2-y^2)dx-x(x^2+y^2)dy=0$$ Let $y=vx \rightarrow \frac{dy}{dx}=v+x\frac{dv}{dx}$ Subtituting: $$vx(x^2-v^2x^2)-x(x^2+v^2x^2)(xv'+v)=0$$ $$vx^3(1-v^2)-x^3(1+v^2)(xv'+v)=0$$ $$v(1-v^2)=(1+v^2)(xv'+v)$$ $$xv'=\frac{v(1-v^2)}{1+v^2}-v$$ $$\frac{v^2+1}{2v^3}dv+\frac{1}{x}dx=0$$ Integrating both sides: $$\int \frac{v^2+1}{2v^3}dv=\frac{1}{2}(\int \frac{1}{v}dv+\int \frac{1}{v^3} dv$$ $$\int \frac{v^2+1}{2v^3}dv=\frac{\ln v}{2} - \frac{1}{4v^2}$$ so $$\frac{\ln v}{2} - \frac{1}{4v^2}+\ln x=C$$ where $C$ is a constant of integration. $$\frac{\ln vx^2}{2}=C+ \frac{1}{4v^2}$$ Subtitute when $y=vx \rightarrow \ln yx=2C+\frac{x^2}{2y^2}$ $$\ln xy=C+\frac{x^2}{2y^2}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.