Answer
$$\frac{5}{2}$$
Work Step by Step
Given $$\lim _{x \rightarrow+\infty}\frac{5x^2-4x}{2x^2+3}$$
Then
\begin{align*}
\lim _{x \rightarrow+\infty}\frac{5x^2-4x}{2x^2+3}&=\lim _{x \rightarrow+\infty}\frac{\frac{5x^2}{x^2}-\frac{4x}{x^2}}{\frac{2x^2}{x^2}+\frac{3}{x^2}}\\
&=\lim _{x \rightarrow+\infty}\frac{5 -\frac{4x}{x^2}}{2 +\frac{3}{x^2}}\\
&=\frac{5}{2}
\end{align*}