Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 1 - Limits and Continuity - 1.3 Limits At Infinity; End Behavior Of A Function - Exercises Set 1.3 - Page 79: 39

Answer

a) $\infty$ b) $-5$

Work Step by Step

a) When $x\rightarrow -\infty$ we have: $\displaystyle\lim_{x\rightarrow -\infty}f(x)=\displaystyle\lim_{x\rightarrow -\infty}(2x^2+5)=+\infty$ b) When $x\rightarrow \infty$ we have: $\displaystyle\lim_{x\rightarrow \infty}f(x)=\displaystyle\lim_{x\rightarrow \infty}\dfrac{3-5x^3}{1+4x+x^3}$. We need to divide both numerator and denominator of $\frac{3 - 5x^3}{1 + 4x + x^3}$ by $x^3$. We get $\displaystyle\lim_{x\rightarrow \infty}\dfrac{3-5x^3}{1+4x+x^3}=\displaystyle\lim_{x\rightarrow \infty}\frac{\frac{3}{x^3} - 5}{\frac{1}{x^3} + \frac{4}{x^2} + 1}$ $=\dfrac{0-5}{0+0+1}=-5$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.