Answer
$$\frac{-1}{7}$$
Work Step by Step
Given $$\lim _{t \rightarrow \infty}\frac{6-t^3}{7t^3+3 }$$
Then
\begin{align*}
\lim _{t \rightarrow \infty}\frac{6-t^3}{7t^3+3 }&=\lim _{t \rightarrow \infty}\frac{6/t^3-t^3/t^3}{7t^3/t^3+3 /t^3}\\
&=\lim _{t \rightarrow \infty}\frac{6/t^3-1}{7 +3 /t^3}\\
&= \frac{0-1}{7+0}\\
&=\frac{-1}{7}
\end{align*}