Answer
$$0$$
Work Step by Step
Given $$\lim _{x \rightarrow -\infty}\frac{x-2}{x^2+2x+1}$$
Then
\begin{align*}
\lim _{x \rightarrow -\infty}\frac{x-2}{x^2+2x+1}&=\lim _{x \rightarrow -\infty}\frac{x/x^2-2/x^2}{x^2/x^2+2x/x^2+1/x^2}\\
&=\lim _{x \rightarrow -\infty}\frac{1/x -2/x^2}{1+2 /x +1/x^2}\\
&=\frac{0-0}{1+0+0}\\
&=0
\end{align*}