Answer
$\infty$
Work Step by Step
Given $$\lim _{t \rightarrow -\infty}\frac{5-2t^3}{t^2+1 }$$
Then
\begin{align*}
\lim _{t \rightarrow -\infty}\frac{5-2t^3}{t^2+1 }&=\lim _{t \rightarrow -\infty}\frac{5/t^2-2t^3/t^2}{t^2/t^2+1/t^2 }\\
&=\lim _{t \rightarrow -\infty}\frac{5/t^2-2t }{1+1/t^2 }\\
&= \infty
\end{align*}