Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 1 - Limits and Continuity - 1.3 Limits At Infinity; End Behavior Of A Function - Exercises Set 1.3 - Page 79: 27

Answer

$$\frac{ 1}{ \sqrt {6}}$$

Work Step by Step

Given $$\lim _{y \rightarrow -\infty}\frac{2-y}{\sqrt {7+6y^2} } $$ Then \begin{align*} \lim _{y \rightarrow -\infty}\frac{2-y}{\sqrt {7+6y^2} }&=\lim _{y \rightarrow -\infty}\frac{2/y-y/y}{\sqrt {7/y^2+6y^2/y^2} } \\ &=\lim _{y \rightarrow -\infty}\frac{2/y-1 }{\sqrt {7/y^2+6 } }\\ &= \frac{-1}{-\sqrt {6}}\\ &= \frac{ 1}{ \sqrt {6}} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.