Answer
$$\frac{ 1}{ \sqrt {6}}$$
Work Step by Step
Given $$\lim _{y \rightarrow -\infty}\frac{2-y}{\sqrt {7+6y^2} } $$
Then
\begin{align*}
\lim _{y \rightarrow -\infty}\frac{2-y}{\sqrt {7+6y^2} }&=\lim _{y \rightarrow -\infty}\frac{2/y-y/y}{\sqrt {7/y^2+6y^2/y^2} } \\
&=\lim _{y \rightarrow -\infty}\frac{2/y-1 }{\sqrt {7/y^2+6 } }\\
&= \frac{-1}{-\sqrt {6}}\\
&= \frac{ 1}{ \sqrt {6}}
\end{align*}