Answer
$$\frac{5}{3}$$
Work Step by Step
Given $$\lim _{x \rightarrow \infty}\frac{5x^2+7}{3x^2-x }$$
Then
\begin{align*}
\lim _{x \rightarrow \infty}\frac{5x^2+7}{3x^2-x }&=\lim _{x \rightarrow \infty}\frac{5x^2/x^2+7/x^2}{3x^2/x^2-x/x^2 }\\
&=\lim _{x \rightarrow \infty}\frac{5 +7/x^2}{3 -1/x }\\
&=\frac{5+0}{3-0}\\
&=\frac{5}{3}
\end{align*}