Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 1 - Limits and Continuity - 1.3 Limits At Infinity; End Behavior Of A Function - Exercises Set 1.3 - Page 79: 23

Answer

$$\sqrt[3]{\frac{ -5 }{ 8 }}$$

Work Step by Step

Given $$\lim _{x \rightarrow \infty}\sqrt[3]{\frac{2+3x-5x^2}{1+8x^2 }}$$ Then \begin{align*} \lim _{x \rightarrow \infty}\sqrt[3]{\frac{2+3x-5x^2}{1+8x^2 }}&=\lim _{x \rightarrow \infty}\sqrt[3]{\frac{2/x^2+3 /x -5 }{1/x^2+8 }}\\ &=\sqrt[3]{\frac{0+0 -5 }{0 +8 }}\\ &=\sqrt[3]{\frac{ -5 }{ 8 }} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.