Answer
$$\sqrt[3]{\frac{ -5 }{ 8 }}$$
Work Step by Step
Given $$\lim _{x \rightarrow \infty}\sqrt[3]{\frac{2+3x-5x^2}{1+8x^2 }}$$
Then
\begin{align*}
\lim _{x \rightarrow \infty}\sqrt[3]{\frac{2+3x-5x^2}{1+8x^2 }}&=\lim _{x \rightarrow \infty}\sqrt[3]{\frac{2/x^2+3 /x -5 }{1/x^2+8 }}\\
&=\sqrt[3]{\frac{0+0 -5 }{0 +8 }}\\
&=\sqrt[3]{\frac{ -5 }{ 8 }}
\end{align*}