Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 1 - Limits and Continuity - 1.3 Limits At Infinity; End Behavior Of A Function - Exercises Set 1.3 - Page 79: 22

Answer

$$\frac{4}{ 7}$$

Work Step by Step

Given $$\lim _{x \rightarrow - \infty}\frac{x+4x^3}{1-x^2+7x^3 }$$ Then \begin{align*} \lim _{x \rightarrow - \infty}\frac{x+4x^3}{1-x^2+7x^3 }&=\lim _{x \rightarrow - \infty}\frac{x/x^3+4x^3/x^3}{1/x^3-x^2/x^3+7x^3/x^3 }\\ &=\lim _{x \rightarrow - \infty}\frac{1/x^2+4 }{1/x^3-1/x +7 }\\ &= \frac{0+4}{0-0+7}\\ &= \frac{4}{ 7} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.