Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 1 - Limits and Continuity - 1.3 Limits At Infinity; End Behavior Of A Function - Exercises Set 1.3 - Page 79: 8

Answer

$\lim_\limits{x\to -\infty}f(x)$ should be $-1$. Or, $\lim_\limits{x\to -\infty}f(x)=-1$

Work Step by Step

We have given $f(x)=\dfrac{\sqrt{x^2+x}}{x+1}$ Substitute $x=-10$ We get, $f(x)=\dfrac{\sqrt{10^2-10}}{-10+1}=\dfrac{\sqrt{100-10}}{-9}=-1.05409255339$ Substitute $x=-100$ We get, $f(x)=\dfrac{\sqrt{100^2-100}}{-100+1}=\dfrac{\sqrt{10000-100}}{-99}=-1.00503781526$ Substitute $x=-1000$ We get, $f(x)=\dfrac{\sqrt{1000^2-1000}}{-1000+1}=\dfrac{\sqrt{1000000-1000}}{-999}=-1.00050037531$ Substitute $x=-10000$ We get, $f(x)=\dfrac{\sqrt{10000^2-10000}}{-10000+1}=\dfrac{\sqrt{100000000-10000}}{-9999}=-1.00005000375$ Substitute $x=-100000$ We get, $f(x)=\dfrac{\sqrt{100000^2-100000}}{-100000+1}=\dfrac{\sqrt{10000000000-100000}}{-99999}=-1.00000500004$ Substitute $x=-1000000$ We get, $f(x)=\dfrac{\sqrt{1000000^2-1000000}}{-1000000+1}$ $\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\dfrac{\sqrt{1000000000000-1000000}}{-999999}=-1.0000005$ So, we get that if $x$ decreases the value of function $f(x)$ gets closer and closer to $-1$. Therefore, if $x$ decreases without bound $f(x)$ should approaches $-1$. Hence, $\lim_\limits{x\to -\infty}f(x)$ should be $-1$. Or, $\lim_\limits{x\to -\infty}f(x)=-1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.