Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 1 - Limits and Continuity - 1.3 Limits At Infinity; End Behavior Of A Function - Exercises Set 1.3 - Page 79: 40

Answer

a) $0$ b) $-6$

Work Step by Step

a) Divide $\frac{2 + 3t}{5t^2 + 6}$ with $t^2$ in both numerator and denominator. We get $\frac{\frac{2}{t^2} + \frac{3}{t}}{5 + \frac{6}{t^2}}$ Then apply $\lim\limits_{t \to -\infty}$. $\displaystyle\lim_{t\rightarrow-\infty}\frac{\frac{2}{t^2} + \frac{3}{t}}{5 + \frac{6}{t^2}}=\frac{0+0}{5+0}=0$ because the limits of $\frac{2}{t^2}$ ,$\frac{3}{t}$ , $\frac{6}{t^2}$ are $0$. b) Take $\frac{\sqrt{36t^2 - 100}}{5-t}$ , Divide by $t$ in both numerator and denominator. We get $\frac{\sqrt{36 - \frac{100}{t^2}}}{\frac{5}{t}-1}$ Applying $\lim\limits_{t \to +\infty}$ we get $\displaystyle\lim_{t\rightarrow-\infty}\frac{\sqrt{36 - \frac{100}{t^2}}}{\frac{5}{t}-1}=\frac{6}{-1}=-6$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.